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SUMMARY

The paper contains considerations on investigations on an influence of multiple cha-
racters developing at the same time (i.e. co-related) on their product. In agronomy
such problem is called a “Yield Component Analysis”. A new approach to the que-
stion is presented and two different forms of estimators are compared using simulation
studies. Afterwards, recommendations regarding the appropriate (although biased)
estimators of the influence of the components on the yield are given.
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1. Introduction

In many investigations in biological and agricultural sciences we meet a situation in
which a final effect, i.e. a dependent variable, is a product of its causes, i.e. predictor
variables. Although an analysis of an influence of the predictors on the response
variable seems quite easy in such a case, an inquisitive look at the problem causes
some doubts. There is no natural and univocal method that could be applied to the
problem when we aim to analyze the importance of the multiplicative predictors in
affecting the response.

The question has been deeply investigated especially in agricultural sciences. It is
called a “Yield Component Analysis”, for it is the commonly considered problem in
analyzing the influence of the components on the yield, both per plant or area unit.
Kozak (2002) and Kozak and Madry (2004) gave a definition of the components as
the variables which product gives the yield.

In what follows we will call the problem the yield component analysis; the depen-
dent variable will be also called the yield, and the causes — the components. Certainly,
we do not resolve ourselves into such question; it is widened to all biological and other
problems that can be represented by the multiplicative function (1) — see below. The
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appropriate method of the yield component analysis should be, first of all, convenient
in the interpretation (as, for instance, the standardized multiple linear regression),
and secondly, it should take into account (at least approximately) a mathematical
deterministic multiplicative function of the response variable and its predictors given

by

k
Y =F(X)= HXi, (1)

where Y is the yield, and X;,i = 1, ..., k, are the yield components.

The form of the relationship (1) may make us think that the influence of the predic-
tors (components) is obvious; unfortunately, it is not so easy and natural. Therefore
many statistical methods have been proposed to study the quantity of the influence of
the components on the yield. Fraser and Eaton (1983) gave a comprehensive descrip-
tion of the methods used in yield component analysis; Kozak (2002) did the same,
but he concentrated mainly on the methods proposed after 1983.

The most often statistical method used in yield component analysis is a linear
regression analysis, especially in a standardized scale (also called a path analysis).
It requires an assumption on linearity of the relationship between the yield and its
components. Therefore, the interpretation is approximate and biased; sometimes
a value of an estimator of a coefficient of determination of the linear model can
be quite big (almost 100%), but sometimes it is not satisfying, even less than 80%
(Kozak, 2004); (and, as it is shown in the paper, it can be near 0%). Note that the
real determination is 100%, because the relationship (1) is deterministic. Moreover,
knowing the real form of the relationship (1), which is not too complex, we would like
to use it instead of approximating it with the linear model.

Therefore, several statistical more or less appropriate nonlinear approaches have
been proposed. Some of them used a logarithmic transformation of the function (1),

see e.g. Eaton and Kyte (1978), Hardwick and Andrews (1980), Piepho (1995), of the
form
k

Y = InX;. (2)
i=1

The logarithmic transformation (2) simplifies the relationship, because from the mul-
tiplicative function (1) we obtain the additive one (2). Still the analysis cannot be
satisfactory enough, for the interpretation regards the logarithmic scale. Obtained co-
efficients, (specific for the particular method), need to be interpreted with respect to
such transformation. Hence, when using the transformation (2), one has to remember
that he makes the logarithmic yield component analysis, not the original one. The
results obtained by using such procedures cannot be directly compared.
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Therefore, let us seek some other methods. Sparnaaij and Bos (1993) proposed an
interesting approach to the yield component analysis, and Kozak (2002) modified it.
It works on the original scale of the variables; however, the method does not regard
the components, but the characters that are a source of creating the components;
Sparnaaij and Bos (1993) called them the primary characters. Of course it makes the
interpretation on the components only approximate. Moreover, the method regards
only the variables developing sequentially. For details see the mentioned papers.

Basing on formulas for an expected value of the product of two normal variables
given by Lu (1961), Hiihn (1987) gave a following formula for a coefficient of variation
of the yield
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(3)

where vy = oy (uy)_lis the coefficient of variation of the yield Y, vy,vq are the coeffi-
cients of variation of the components X1, X2, and p;, is the coefficient of correlation
between them.

Uy

Hithn (1987) considered only two components, and he said that a formula for three
components is quite ease to obtain (unfortunately, in such a case it would be biased,
in the contrary to (3)). The interpretation of the influence of the components on the
stability of the yield can be made on a basis of (3). Note that the influence of the
coefficients of variation of particular components is not direct, so the interpretation is
not easy; we just might conclude, that the yield component with the bigger coefficient
of variation has bigger influence on the yield. First, it is obvious (see (1)), and
secondly, one may think it is too poor interpretation.

Moreover, some yield components are co-related, and the relationship between
the other ones can be treated rather as a cause-and-effect relationship. In the latter
case the first component influences the following him components; it should be also
taken into account. In this paper we consider just the first case, i.e. the case of the
co-related yield components.

Afterwards, we see a need of an appropriate method of the yield component ana-
lysis. It should take into account two aspects; the first one is the mathematical form
of the relationship (1); secondly, the method should enable an easy enough and direct
interpretation of the importance of the components in the yield formation. An aim of
the paper is to present a new approach to the problem. Moreover, two different esti-
mators are presented (one of them is known) and they are compared using simulation
studies.
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2. Description of the problem and the method

Consider a following relationship between the yield and its predictors:
k
y=f(X1i=21,.., X =$k)=f($1,~-,$k)=H$i, (4)
i=1

where y is the value of the response variable Y (yield) and 2,4 = 1, ..., k, is the value
of the i-th predictor X; (the component).

Our aim is to obtain a parameter of the influence of the i-th component on the
yield, which would be interpreted as an expected change of the function (4) value
caused by increasing the value of the i-th component X; by a unit of its standard
deviation o;. The most appropriate and convenient from an interpretative point of
view would be presenting this change of Y in units of its standard deviation (such
interpretation is appreciated by researchers). Therefore, our parameter for the i-th
predictor variable, say ;, would take a form

oi=E[f(a:l,...,xi+ai,...,xk)—f(ml,...,:ri,...,mk)} , i=1,..k (5)

Ty

Let us introduce a change of the value of (4) after increasing X;,i = 1,..,k, by
the unit of its standard deviation:

A; = f(z1ye,xi + 03, vy Tk) = f (1, ey Ty op) = (6)
k k k
= (zi+0;) H a:j—H:z:j=0',- H zj,
J=li#i  j=1 J=1j%i

where o; stands for the population standard deviation of the component X;.
If we want to present the change of Y in the units of its standard deviation o
A, we just have to divide the A; by oy, i.e.

Y

Ao = Aia';l. (7

Considering A;, and (5), our parameter takes a form of an expected value of (7), i.e.

k
6 = E(Aia)=E(é’->=E % @) = (8)
Ty Y =1
ag; k

o ety
Yo \y=Lj#i
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Afterwards, a final form of the parameter 0; is

i
01’ = U_y/*l’yi> (9)
where u,, is a population mean of a variable Y¥; = H?:l, i X33 note that in a bi-
(o 5] .
variate case, i.e. with two predictors, 6; = it ,i=1,2,7#1.

Let us consider the bi-variate case first.y An interpretation of the parameters
6;,7 = 1,2, is quite simple and convenient. The given 0, informs about the expected
change of the yield (in the units of its standard deviation) after increasing the i-
th predictor variable by its standard deviation. It is a common interpretation in
the standardized regression problems; moreover, it is much-desired interpretation by
the biologists and agriculturalists (it is a very important type of interpretation, for
we often need to know on which variable we should concentrate during a plants’
vegetation). The value of 6; informs about the importance of the i-th variable in
determining the function value; these parameters are comparable, i.e. if §; is bigger
than 02, we conclude that the variable X; has the bigger influence on the function
(1), i.e. on the yield, than the variable X.

The interpretation in the general multivariate case is the same as in the bi-variate
case. It is still convenient from practical point of view. The following section contains
considerations on a problem of estimation of the effects of the multiplicative variables
on their product.

3. Estimation

In what follows two different estimators of the parameters 6; are presented. They are

biased; therefore, in a next section we will compare them using a Monte Carlo study.
First estimator of 8;, say f1;, is a natural estimator for such parameter, i.e. con-

structed by replacing in (9) the particular parameters with their estimators:

~ Si
011: = _zl-l’yiv (10)
Sy
where s; = &; is the estimator of 7, s, = G is the estimator of oy, and fi,,is a sample
. 5 8;Tj . L
mean of a variable Y; (in the bi-variate case 61; = —?;—J,z =1,2,5 #1).
y

Note that the estimator éu is biased, because

E(b)=E (ﬂ> 2 Thus. (11)

Sy Ty
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Second proposed estimator of 0;, say 921', has a following form:

By = by, (12)
Sy
where b; is a least-square estimator of a partial regression coefficient for the i-th
predictor variable from a linear regression model E(Y|Xy,...,Xk) (cf. Draper and
Smith, 1998).

It is easy to note that the formula ( 12) for the estimator is similar to standardized
partial regression coefficients from the linear model E (Y| Xy, ..., X)) . Such form of
the estimator makes us approximating the relationship (1) with the linear model.
Although it can make the estimation biased and inappropriate (see the introduction),
applications of the estimator (12) can be found in many papers (e.g. Kang et. al.,
1991, Rozbicki and Madry, 1998, Jag-Shoran et. al., 2000, Kumar and Kumar, 2000,
and many others); that is why we decided to consider it in the paper and to compare
with 9“. The properties, i.e. the bias and mean-square error of the estimators, are
studied in a following section.

4. Monte Carlo studies on the estimators

A choice of the appropriate estimator should be based on the mentioned properties
of the estimators, i.e. the bias and MSE (mean-square error). Analytical (even
approximate) satisfactory formula cannot be found; therefore we will carry out the
Monte Carlo study to investigate the empirical bias and MSE of the estimators. On
the basis of the studies, conclusions and recommendations regarding the estimators
can be made.

Two experiments have been carried out. The first one regarded the bi-variate
and the second one the three-variate case. Different values of correlation coefficients
between the components and their coefficients of variation have been considered (pre-
liminary investigations showed that we should pay attention only to the coefficients of
variation of the predictors, and not necessarily to their means and standard deviation;
see also Kozak, 2004).

An artificial population consisting of 100,000 units has been created in each case
of the study; such big population should approximately imitate an infinite one. For
each unit values of k components were generated according to a given distribution.
The predictor variables were generated with given characteristics, i.e. coefficients of
variation denoted by cv (controlled by a value of their standard deviations; means were
constant and equaled 10) and the coefficients of correlation between them. Values of
the effect variable in the population units were evaluated as a, product of the predictors
in the particular unit, according to (4).
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In the bi-variate case the following characteristics of predictors have been used:
cv = {0.2,0.5} ,7 = {-0.5,0,0.5} . It gave us eighteen mutually different combinations
(cv %), for a sequence of the variables is not important. For each artificial population
the parameters 6;,7 = 1, 2, have been evaluated, and for thousand times (R = 1000) a
simple sample of size n = 100 have been drawn; in each such iteration the estimators
were evaluated.

On the basis of the results the empirical relative bias, coefficient of variation and
mean-square error have been assessed using following formulas:

RB 9ji) - aj"ej O i C12i=1,..k (15)
v (gﬁ) - #(J) (16)
i
. 1 R = \2
MSE (0;) = = ; (B0 - 051) (17)

where RB (@ji>is the relative empirical bias and MSFE (éﬁ)is the empirical mean-
square error of 9ji, cv(éji)is the empirical coefficient of variation of 9ji, 0; is the
known value of the i-th parameter, 8;; = R Ele fji,is the mean value of the
j-th estimator (j = 1,2) of the ¢-th parameter, and @ﬁg is the g-th value of @ji,
g=1,...,1000.

Results of the study, i.e. the characteristics (15) and (16), are presented in Table 1;
the table contains also values of the coefficient of determination (R?) of the population
linear model approximating the relationship (1) in the particular combination.

The values of the coefficient of determination varied from 76% up to almost 99%;
see also Kozak (2004). The analysis showed that both estimators were biased, and
they usually overestimated the parameters’ value. The relative biases of the estimators
were not big (not bigger than 1%) and usually quite similar. The coefficients of
variation of both estimators were also quite similar and increased when increasing
the variation of the variables. This study on the bi-variate case does not allow us
to conclude that any of two presented estimators is better, i.e. less biased or more
efficient. Note that even for the weak linear relationship between the response variable
and its predictors, the bias of the estimators based on the partial regression coefficients
was still small.

A similar Monte Carlo study has been conducted for the three-variate case. Certa-
inly, two many combinations could be considered in such a case; therefore just several
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Table 1. Results of the Monte Carlo study for bi-variate case — empirical characteristics
(RB - relative bias, cv — coefficient of variation) of the estimators (Est.) 01; and 8y, and
coefficient of determination of the linear model E(Y|X1,X?)

Est. co(X) r2  RB(A) x100 cu(d) R?
61 02,02 -05 0.9, 0.8 8.7, 7.4 -
02 02,02 -05 0.8, 0.8 81,73  0.952
01 02,05 -05 0.7, 0.1 15.1,11.2 -
02 02,05 -05 0.5, 0.1 179,75 0.938
01; 05,05 -05 0.6, 0 10.4, 9.4 -
2 05,05 -05 07,-0.3 11.5,9.6  0.762
61 02,02 0 0,0.5 7.24,7.30 -~
02 02,02 0 0,0.4 72,73  0.981
b1 02,05 0 0.8, 0.1 12.1,106 -
02 02,05 0 0.6, 0.1 15.0,9.8 0.967
61; 0505 0 0.9, 0.9 8.1, 8.7 -
02 05,05 0 0.2, 0.4 8.6,8.0  0.888
01; 02,02 05 0.2,0.3 6.0, 5.5 -
02 02,02 05 0.3, 0.2 6.5,5.5  0.984
01; 02,05 05 0.6, 0.2 7.7,9.3 -
02 02,05 05 0.9, 0 9.7,8.2  0.969
@1,- 05,05 0.5 0.4, 0.1 7.2,7.4 -

G20 05,05 05 0.7, -0.2 8.1,84  0.905

of them have been chosen to be presented in the paper — they pretty well characterized
the problem. Results and a design of the experiment are presented in Table 2.

In this case we got more interesting results. Note that in the three-variate case we
might get very small value of coefficients of the linear determination (in two cases we
got almost zero — see table 2). It influenced the values of the coefficients of variation
of the estimators @gi, which employ the linear regression analysis. The variation of
the estimators 92i was almost always worse than the variation of @u. The biases
of both estimators were still similar, although in some combinations the bias of 6y
was smaller. The results of the investigation show that in the three-variate case the
estimator @u is markedly better when the determination of the linear approximation
of the relationship (1) is small.
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Table 2. Results of the Monte Carlo study for three-variate case — empirical characteristics
(RB - relative bias, cv — coefficient of variation) of the estimators (Est.) #1; and 62:, and

coefficient of determination of the linear model E(Y|X1, X2, X3)

Est. cv(X) r = {ri2,713,723} RB(#) x 100 cv(6) R?
61i  05,05,05 -0.5,-0.5-0.5 42,38,45 251,320, 17.7 -
f2i 05,0505 -0.5-0.5,-0.5 6.3,5.7,7.3  57.5,57.3,33.1 0.0335
61 05,05,05 0.5, 0.5, 0.5 2.0, 2.0, 2.7 10.5, 8.8, 10.5 -
f2;  0.5,0.5,0.5 0.5, 0.5, 0.5 2.5,0.7,0.6  14.5,13.5,17.7  0.777
61 05,05,05 0.5,0, 0.5 1.0,1.0,14  16.1, 14.6, 13.2 -
02 0.5,0.5,0.5 0.5, 0, 0.5 0, 0.5, 1.9 17.7, 14.7, 16.0  0.570
61 02,0202 -05,-0.5-0.5 2.2,2.0,15 153, 12.0, 10.7 -
i 02,0202 -05-05-05 -1.1,-0.9,-1.7 34.4,49.7,33.1 0.059
01 0.2,0.2,0.2 0.5, 0.5, 0.5 0.6, 0.6, 0.6 6.6, 7.9, 7.9 -
02 0.2,02,0.2 0.5, 0.5, 0.5 0.3, 0.4, 0.4 8.5,10.4,10.2  0.950
61 05,02,05 -0.5,-0.5,-0.5 1.3,1.8,14 11.0, 6.1, 12.5 -
f2;  05,02,05 -0.5-0.5,-05 -2.2,-59,-2.6 259,274,524 0.548
01 05,02,02 -0.5,-0.5,-0.5 0.7,1.7, 1.8 7.0, 6.7, 6.8 -
2 05,02,02 -0.5,-0.5,-0.5 0.5,1.7,23  11.5,12.6,17.6  0.835
61 05,0202  0.5,-0.5-0.5 0.1, 0.4, 0.3 4.4,3.6,4.9 -
f2;  05,02,02  05,-0.5 -0.5 0.3, -0.1, -0.3 4.1,4.5, 6.3 0.955

All computation has been made using the R language; cf. R Development Core
Team (2004). The multivariate normal distributions with a specified covariance ma-
trix and vector of means were generated using a function mvrnorm from a package

MASS.

5. Discussion

The considerations presented in the paper are correct when the predictor variables,
i.e. the components, satisfy some conditions. First, the variables Xj,..., X should
follow a k-variate normal distribution (Lu, 1961).

In almost all applications at least one component is a discontinuous variable. The-
refore we should confine to treat it as the continuous one and have to assume its
normal distribution. Investigations show that the histogram based on values of such
variable is a good approximation of a smooth density of the normal distribution (cf.
Kozak, 2002).
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Moreover, some of the variables X1, ..., Xk do not follow the normal distribution,
and the whole set of k variables does not follow the k-variate normal distribution.
Again, investigations show that we can assume the approximate univariate and mul-
tivariate normal distribution of the studied variables.

The above assumptions should be enough to carry out the appropriate yield com-
ponent analysis. Certainly, the analysis is always approximate for two reasons; first
is mentioned above (regarding the assumptions), and the second one results from the
bias of both types of the estimators.

In conclusion, the results of the simulation studies showed that in the bi-variate
case both estimators have similar properties (bias and mean-square error), but in the
three-variate case éu, the newly proposed estimator, has been chosen as the better
one (especially in a case of big values of the coefficients of variation of the predictors
and negative correlation between them). After connecting this conclusion with the
simple form of éu, we can recommend it as the appropriate estimator of the influence
of the co-related yield components (or, in general, the multiplicative predictors) on
the yield (response variable).
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Nowa koncepcja analizy komponentéw plonu

STRESZCZENIE

W artykule przedstawione sg rozwazania na temat wplywu cech ilorazowych rozwija-
jacych sie w tym samym czasie, czyli wspétzaleznych, na cech¢ begdacsy ich iloczynem.
W agronomii tak postawiony problem nazywany jest “analiza skladowych plonu”.
Autor proponuje nowe podejécie do tego problemu oraz za pomoca badai symula-
cyjnych poréwnuje dwa rézne estymatory. Na podstawie tych badaf zaproponowana

zostala posta¢ odpowiedniego (cho¢ obcigzonego) estymatora wplywu skltadowych na
plon.

SLOWA KLUCZOWE: iloczynowe zmienne objaéniajace, sktadowe plonu, badanie Monte
Carlo.



